基于YOLOv5改进模型的杂交稻芽种快速分级检测
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家自然科学基金(52175226);岭南现代农业实验室科研项目(NT2021009);广东省科技厅项目(KTP20210196);现代农业产业技术体系建设专项(CARS-01-47)


Rapid grading detection on hybrid rice bud seeds based on improved YOLOv5 model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的 提高杂交稻种子活力分级检测精度和速度。方法 提出了一种基于YOLOv5改进模型(YOLOv5-I)的杂交稻芽种快速分级检测方法,该方法引入SE (Squeeze-and-excitation)注意力机制模块以提高目标通道的特征提取能力,并采用CIoU损失函数策略以提高模型的收敛速度。结果 YOLOv5-I算法能有效实现杂交稻芽种快速分级检测,检测精度和准确率高,检测速度快。在测试集上,YOLOv5-I算法目标检测的平均精度为97.52%,平均检测时间为3.745 ms,模型占用内存空间小,仅为13.7 MB;YOLOv5-I算法的检测精度和速度均优于YOLOv5s、Faster-RCNN、YOLOv4和SSD模型。结论 YOLOv5-I算法优于现有的算法,提升了检测精度和速度,能够满足杂交稻芽种分级检测的实用要求。

    Abstract:

    Objective In order to improve the grading detection accuracy and speed of hybrid rice seed vigor. Method A rapid grading detection method for hybrid rice bud seeds named YOLOv5-I model, which was an improved model based on YOLOv5, was proposed. The feature extraction ability of the target channel of YOLOv5-I model was improved by introducing the SE (Squeeze-and-excitation) attention mechanism module, and a CIoU loss function strategy was adopted to improve the convergence speed of this model. Result The YOLOv5-I algorithm effectively achieved the rapid grading detection of hybrid rice bud seeds, with high detection accuracy and speed. In the test set, the average accuracy of the YOLOv5-I model was 97.52%, the average detection time of each image was 3.745 ms, and the memory space occupied by the YOLOv5-I model was small with 13.7 MB. The detection accuracy and speed of YOLOv5-I model was better than those of YOLOv5s, Faster-RCNN, YOLOv4 and SSD models. Conclusion The YOLOv5-I algorithm is better than existing algorithms, improves detection accuracy and speed, and can meet the practical requirement for grading detection of hybrid rice bud seeds.

    参考文献
    相似文献
    引证文献
引用本文

钟海敏,马旭,李泽华,王曦成,刘赛赛,刘伟文,王承恩,林泳达.基于YOLOv5改进模型的杂交稻芽种快速分级检测[J].华南农业大学学报,2023,44(6):960-967

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-09-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-08